Quick attribute reduction in inconsistent decision tables

نویسندگان

  • Min Li
  • Changxing Shang
  • Shengzhong Feng
  • Jianping Fan
چکیده

This paper focuses on three types of attribute reducts in inconsistent decision tables: assignment reduct, distribution reduct, and maximum distribution reduct. It is quite inconvenient to judge these three types of reduct directly according to their definitions. This paper proposes judgment theorems for the assignment reduct, the distribution reduct and the maximum distribution reduct, which are expected to greatly simplify the judging of these three types of reducts. On this basis, we derive three new types of attribute significance measures and construct the Q-ARA (Quick Assignment Reduction Algorithm), the QDRA (Quick Distribution Reduction Algorithm), and the Q-MDRA (Quick Maximum Distribution Reduction Algorithm). These three algorithms correspond to the three types of reducts. We conduct a series of comparative experiments with twelve UCI (machine learning data repository, University of California at Irvine) data sets (including consistent and inconsistent decision tables) to evaluate the performance of the three reduction algorithms proposed with the relevant algorithm QuickReduct [9,34]. The experimental results show that QuickReduct possesses weak robustness because it cannot find the reduct even for consistent data sets, whereas our proposed three algorithms show strong robustness because they can find the reduct for each data set. In addition, we compare the Q-DRA (Quick Distribution Reduction Algorithm) with the CEBARKNC (conditional entropy-based algorithm for reduction of knowledge without a computing core) [43] because both find the distribution reduct by using a heuristic search. The experimental results demonstrate that Q-DRA runs faster than CEBARKNC does because the distribution function of Q-DRA has a lower calculation cost. Instructive conclusions for these reduction algorithms are drawn from the perspective of classification performance for the C4.5 and RBF-SVM classifiers. Last, we make a comparison between discernibility matrix-based methods and our algorithms. The experimental results indicate that our algorithms are efficient and feasible. 2013 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assignment Reductions in Inconsistent Ordered Intuition Fuzzy Infor- mation Decision Tables

In the real-world, most information systems are based on dominance relations and may be inconsistent. Moreover, taking the imprecise evaluations in the description of objects into account, intuition fuzzy information systems are introduced to handle with this problem. In this paper, attribute reductions are discussed in inconsistent ordered intuition fuzzy information decision tables. The conce...

متن کامل

Analysis of alternative objective functions for attribute reduction in complete decision tables

Attribute reduction and reducts are important notions in rough set theory that can preserve discriminatory properties to the highest possible extent similar to the entire set of attributes. In this paper, the relationships among 13 types of alternative objective functions for attribute reduction are systematically analyzed in complete decision tables. For inconsistent and consistent decision ta...

متن کامل

Approximation reduction in inconsistent incomplete decision tables

0950-7051/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.knosys.2010.02.004 * Corresponding author. Address: Key Laboratory o and Chinese, Information Processing of Ministry of China. E-mail addresses: [email protected] (Y. Qian [email protected] (D. Li), [email protected] (F. W (N. Ma). This article deals with approaches to attribute reductions in inconsistent incomplete decision tabl...

متن کامل

Application of Dynamic Programming Approach to Optimization of Association Rules Relative to Coverage and Length

In the paper, an application of dynamic programming approach to optimization of approximate association rules relative to the coverage and length is presented. It is based on the extension of dynamic programming approach for optimization of decision rules [1] to the case of inconsistent decision tables. Applications of rough sets theory to the construction of rules for knowledge representation ...

متن کامل

Quick Attribute Reduction Based on Approximation Dependency Degree

Attribute reduction is one of the core research content of Rough sets theory. Many existing algorithms mainly are aimed at the reduction of consistency decision table, and very little work has been done for attribute reduction aimed at inconsistency decision table. In fact, the methods finding Pawlak reduction from consistent decision table are not suitable for inconsistency decision table. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 254  شماره 

صفحات  -

تاریخ انتشار 2014